~

Collection des données	
Collection des données Diffractomètre Syntex $P2_1$ Balayage $\omega - 2\theta$ Correction d'absorption: aucune 2114 réflexions mesurées 2114 réflexions indépendantes 1095 réflexions observées	$\theta_{max} = 27,5^{\circ}$ $h = -10 \rightarrow 10$ $k = -10 \rightarrow 10$ $l = 0 \rightarrow 12$ 3 réflexions de référence mesurées toutes les 60 réflexions variation d'intensité: 1%
$[I > 4\sigma(I)]$	

Affinement

$\Delta \rho_{\rm max} = 0.46 \ {\rm e} \ {\rm A}^{-3}$
$\Delta \rho_{\rm min} = -0.48 \ {\rm e} \ {\rm A}^{-3}$
Correction d'extinction:
aucune
Facteurs de diffusion des
International Tables for
X-ray Crystallography
(1974, Tome IV)

Tableau 1. Coordonnées atomiques et facteurs d'agitationthermique isotrope équivalents (Å2)

$$U_{\text{éq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	v	Ζ	$U_{\acute{e}a}$
Cu	1	0	1	0,0265 (8)
N(1)	1,1282 (6)	0,0753 (6)	0,8086 (5)	0,032 (3)
N(2)	1,3876 (6)	0,1798 (7)	0,6268 (5)	0,038 (3)
N(3)	1,4543 (6)	0,1906 (6)	0,8678 (5)	0,026 (3)
N(4)	1,2390 (6)	0,1356 (7)	1,0958 (5)	0,038 (3)
N(5)	1,5709 (6)	0,2887 (6)	1,1109 (5)	0,034 (3)
C(1)	1,3126 (7)	0,1453 (7)	0,7675 (6)	0,026 (4)
C(2)	1,4161 (7)	0,2051 (8)	1,0286 (7)	0,028 (4)
C(3)	1,1084 (8)	0,7182 (9)	0,4044 (7)	0,035 (4)
C(51)	1,7611 (8)	0,3951 (8)	1,0409 (7)	0,042 (4)
C(52)	1,5534 (8)	0,2936 (8)	1,2778 (7)	0,041 (4)
0(1)	1,2048 (5)	0,6012 (6)	0,4027 (5)	0,053 (4)
O(2)	0,9236 (5)	0,6936 (6)	0,4841 (5)	0,052 (3)
O(3)	1,1740 (5)	0,8495 (6)	0,3423 (5)	0,043 (3)

Tableau 2. Paramètres géométriques (Å, °)

Cu—N(1)		1,920 (4)	N(5)—C(2)	1,342 (6)
Cu—N(4)		1,931 (4)	N(5)—C(52)	1,448 (7)
N(1) - C(1)		1,282 (6)	N(5)C(51)	1,476 (6)
N(2) - C(1)		1.323 (6)	C(3) - O(3)	1,221 (6)
N(3) - C(1)		1.392 (6)	C(3) - O(1)	1,270 (6)
N(3) - C(2)		1.364 (6)	C(3) - O(2)	1,339 (6)
N(4) - C(2)		1,305 (6)		
N(1)-Cu-	N(4)	88.9 (2)	N(1) - C(1) - N(3)	122,7 (5)
C(1) = N(1)		128.8 (4)	N(2) - C(1) - N(3)	113,4 (4)
C(2) = N(3)	$-\tilde{\mathbf{C}}(\mathbf{I})$	125.7 (4)	N(4) - C(2) - N(5)	122,6 (5)
C(2) = N(4)	-Cu	129.6 (4)	N(4) - C(2) - N(3)	121,1 (5)
C(2) = N(5)	-C(52)	121.3 (4)	N(5) - C(2) - N(3)	116,3 (5)
C(2) = N(5)	-C(51)	121.7 (5)	O(3) - C(3) - O(1)	124,7 (6)
C(52) = N(5)	-C(51)	116.7 (4)	O(3) - C(3) - O(2)	119,6 (6)
N(1) - C(1)	-N(2)	123,9 (5)	O(1)—C(3)—O(2)	115,7 (6)
D	н	Α	$D \cdot \cdot \cdot A$	D — $H \cdot \cdot \cdot A$
N(1)	H(1A)	O(3')	3,061 (6)	154
N(2)	H(2A)	O(1 ⁱⁱ)	2,893 (5)	158
N(3)	H(3A)	O(3 ⁱⁱ)	2,908 (5)	159
O(2)		O(1 ¹)	2,593 (6)	
Codes de symétrie: (i) $2 - x$, $1 - y$, $1 - z$; (ii) $3 - x$, $1 - y$, $1 - z$.				

Les intensités ont été corrigées des facteurs de Lorentz et de polarisation. La structure a été résolue à l'aide des méthodes directes (*MULTAN*88; Debaerdemaeker *et al.*, 1988). L'affinement des paramètres x, y, z, β_{ij} pour les atomes

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved non hydrogènes, B_{iso} pour les atomes d'hydrogène, a été effectué à l'aide du programme *ORXFLS* (Busing, 1971). Les coordonnées de l'atome d'hydrogène appartenant à l'ion hydrogénocarbonate n'ont pu être déterminées. Les dessins de la structure ont été obtenus à l'aide du programme *ORTEP*II (Johnson, 1976). Les angles dièdres ont été calculés à l'aide du programme *BEST PLANES* (Ito & Sugawara, 1983).

Les listes des facteurs de structure, des facteurs d'agitation thermique anisotrope, des coordonnées des atomes d'hydrogène, des distances et angles des atomes d'hydrogène, des plans moyens et des angles de torsion ont été déposées au dépôt d'archives de l'UICr (Référence: DU1088). On peut en obtenir des copies en s'adressant à: The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.

Références

Busing, W. R. (1971). Acta Cryst. A27, 683-684.

- Debaerdemaeker, T., Germain, G., Main, P., Refaat, L. S., Tate, C. & Woolfson, M. M. (1988). MULTAN88. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univ. de York, Angleterre, et de Louvain, Belgique.
- Hariharan, M., Rajan, S. S. & Srinivasan, R. (1989). Acta Cryst. C45, 911-913.
- Ito, T. & Sugawara, Y. (1983). BEST-PLANES. 3ième version (BP7C). Institut de Recherche en Physique et Chimie, Wako-Shi, Saitama 351, Japon.
- Johnson, C. K. (1976). ORTEPII. Rapport ORNL-5138. Oak Ridge National Laboratory, Tennessee, EU.
- Lemoine, P., Tomas, A., Viossat, B. & Dung, N.-H. (1994). Acta Cryst. C50, 1437-1439.
- Ray, P. (1961). Chem. Rev. 61, 313-359.
- Saha, C. R., Sen, D. & Guya, S. (1975). J. Chem. Soc. Dalton Trans. pp. 1701-1706.
- Sen, D. (1969). J. Chem. Soc. A. pp. 2900-2903.

Acta Cryst. (1995). C51, 215-217

(Nitrito-*O*,*O*')bis(triphenylphosphine)copper(I), (PPh₃)₂Cu(NO₂-*O*,*O*')

JASON A. HALFEN AND WILLIAM B. TOLMAN

Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, MN 55455, USA

(Received 15 February 1994; accepted 2 August 1994)

Abstract

Symmetric binding of nitrite *via* both O atoms to Cu^{I} [Cu—O = 2.191 (4) Å] was observed. The copper coordination geometry is significantly distorted from tetrahedral, as evidenced by the angles P—Cu—P [127.75 (7)°] and O—Cu—O [56.7 (2)°].

Comment

The crystal structure determination of the title compound, $(PPh_3)_2Cu(NO_2-O,O')$, (I), was undertaken as part of our work on synthetic modeling of the interactions of nitrogen oxides with copper sites in biological and heterogeneous catalytic systems (Ruggiero *et al.*, 1993; Tolman, Carrier, Ruggiero, Antholine & Whittaker, 1993; Halfen, Mahapatra, Olmstead & Tolman, 1994; Halfen & Tolman, 1994). In particular, we have been interested in defining the structural features of Cu^{I} – (NO_{2}^{-}) adducts because such species have been implicated as possible intermediates in denitrification reactions catalyzed by copper nitrite reductases (Hulse, Averill & Tiedje, 1989; Jackson, Tiedje & Averill, 1991).

The X-ray crystal structure determination of the le compound revealed that the overall geometry

title compound revealed that the overall geometry (Fig. 1) is closely analogous to that of its precursor, $(PPh_3)_2Cu(NO_3-O,O')$ (Messmer & Palenik, 1969). Particularly noteworthy features (with comparable data for the nitrate precursor given in square brackets) are the molecular twofold rotational axis through Cu1 and N3, the symmetrical nitrito-O,O' coordination with a Cu—O distance of 2.191 (4) Å, a wide P—Cu—P angle of 127.75 (7)° [131.2 (1)°], and an O—Cu—O bite angle of 56.7 (2)° [57.5 (3)°]. The Cu—O bond length

Fig. 1. ORTEP (Johnson, 1965) representation of the complex with H atoms omitted (50% probability ellipsoids).

is significantly longer than the Cu^I—O_{nitrite} distance in the only other copper(I) complex known to contain such a bond, $[({}^{i}Pr_{3}TACN)_{2}Cu_{2}(\mu-NO_{2}-N:O)]PF_{6}$ [Cu—O = 1.968 (2) Å; ${}^{i}Pr_{3}TACN = 1,4,7$ -triisopropyl-1,4,7-triazacyclononane] (Halfen, Mahapatra, Olmstead & Tolman, 1994), suggesting that the Cu^I–(NO₂⁻) interaction in the title complex is rather weak.

Experimental

The title complex was prepared by adding NaNO₂ in MeOH to a solution of $(PPh_3)_2Cu(NO_3-O,O')$ (Messmer & Palenik, 1969) in refluxing CH₃CN. The resulting white precipitate was crystallized by diffusion of Et₂O into a CH₂Cl₂ solution.

Crystal data

 $[Cu(NO_2)(C_{18}H_{15}P)_2]$ Mo $K\alpha$ radiation $M_r = 634.13$ $\lambda = 0.71073 \text{ Å}$ Monoclinic Cell parameters from 23 C2/creflections a = 24.443 (9) Å $\theta = 12-24^{\circ}$ b = 9.102 (2) Å $\mu = 0.846 \text{ mm}^{-1}$ T = 297 Kc = 15.356 (5) Å $\beta = 116.01 (3)^{\circ}$ Prism $V = 3070 (4) \text{ Å}^3$ $0.55 \times 0.45 \times 0.35$ mm Z = 4Colorless $D_x = 1.372$ (2) Mg m⁻³

Data collection

Enraf-Nonius CAD-4 $R_{\rm int} = 0.093$ diffractometer $\theta_{\rm max} = 28^{\circ}$ $h = 0 \rightarrow 32$ ω scans Absorption correction: $k = 0 \rightarrow 12$ empirical (three ψ scans) $l = -20 \rightarrow 20$ $T_{\rm min} = 0.89, \ T_{\rm max} = 1.00$ 3 standard reflections 4009 measured reflections frequency: 60 min 3919 independent reflections intensity decay: none 2457 observed reflections $[I > 2\sigma(I)]$

Refinement

Cu P5

02

N₃

Refinement on I $(\Delta/\sigma)_{\rm max} = 0.02$ $\Delta \rho_{\rm max} = 0.90 \ {\rm e} \ {\rm \AA}^{-3}$ R = 0.063wR = 0.060 $\Delta \rho_{\rm min} = -0.63 \ {\rm e} \ {\rm \AA}^{-3}$ S = 1.72Extinction correction: none 2457 reflections Atomic scattering factors 191 parameters from International Tables H-atom parameters not for X-ray Crystallography refined (1974, Vol. IV, Table $w = 4F_o^2/\sigma^2(F_o^2)$ 2.3.1)

 Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$B_{\text{eq}} = (8\pi^2/3)\sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	у	Ζ	Bea
1	1/2	0.40179 (8)	1/4	2.96 (3)
	0.40863 (5)	0.5103(1)	0.19711 (8)	2.64 (4)
	0.4993 (2)	0.1900 (4)	0.3172 (3)	5.4 (2)
	1/2	0.1147 (7)	1/4	5.9 (3)

C10	0.3452 (2)	0.3880 (5)	0.1767 (3)	3.0(2)
CH	0.3470 (2)	0.2478 (5)	0.1438 (4)	3.8 (2)
C12	0.2984 (2)	0.1524 (6)	0.1228 (4)	4.9 (2)
C13	0.2486 (2)	0.1957 (6)	0.1351 (4)	5.2 (3)
C14	0.2463 (2)	0.3337 (7)	0.1684 (4)	4.6 (2)
C15	0.2944 (2)	0.4304 (5)	0.1890 (3)	3.9 (2)
C20	0.4090 (2)	0.6416 (5)	0.2867 (3)	2.9 (2)
C21	0.4099 (2)	0.7926 (5)	0.2749 (3)	3.7 (2)
C22	0.4187 (2)	0.8864 (5)	0.3506 (4)	4.3 (2)
C23	0.4265 (2)	0.8321 (6)	0.4382 (4)	4.3 (2)
C24	0.4253 (2)	0.6819 (6)	0.4514 (4)	4.4 (2)
C25	0.4169 (2)	0.5888 (5)	0.3759 (3)	4.0 (2)
C30	0.3826 (2)	0.6170 (4)	0.0856 (3)	2.8 (2)
C31	0.3216 (2)	0.6289 (5)	0.0202 (3)	3.9 (2)
C32	0.3050 (2)	0.7111 (6)	0.0640 (4)	4.5 (2)
C33	0.3475 (2)	0.7825 (5)	-0.0825 (3)	4.1 (2)
C34	0.4079 (2)	0.7709 (5)	-0.0189 (4)	4.2 (2)
C35	0.4249 (2)	0.6886 (5)	0.0645 (3)	3.7 (2)

Table 2. Selected geometric parameters (Å, °)

Cul-P5	2.243 (1)	C20-C21	1.387 (6)
CulO2	2.191 (4)	C20-C25	1.382 (6)
P5-C10	1.821 (4)	C21—C22	1.381 (6)
P5-C20	1.820(4)	C22—C23	1.367 (7)
P5C30	1.823 (4)	C23-C24	1.385 (7)
O2N3	1.245 (5)	C24-C25	1.378 (6)
C10C11	1.381 (6)	C30C31	1.390 (6)
C10-C15	1.390 (6)	C30—C35	1.375 (6)
C11—C12	1.391 (6)	C31-C32	1.392 (6)
C12—C13	1.371 (7)	C32—C33	1.357 (7)
C13C14	1.366 (8)	C33—C34	1.372 (6)
C14-C15	1.391 (6)	C34C35	1.382 (6)
P5-Cu1-P5'	127.75 (7)	C13-C14-C15	119.9 (5)
P5Cu1O2	110.2 (1)	C10-C15-C14	120.7 (4)
P5-Cu1O2'	115.4 (1)	P5-C20-C21	123.1 (4)
02Cu102'	56.7 (2)	P5C20C25	118.2 (3)
Cu1-P5-C10	115.5 (2)	C21-C20-C25	118.1 (4)
Cu1-P5-C20	110.0(1)	C20-C21-C22	120.5 (4)
Cu1-P5-C30	117.2(1)	C21C22C23	120.5 (5)
C10-P5-C20	104.6 (2)	C22—C23—C24	119.9 (5)
C10-P5-C30	104.1 (2)	C23—C24—C25	119.3 (5)
C20-P5-C30	104.1 (2)	C20-C25-C24	121.7 (5)
Cu1	95.0 (4)	P5-C30-C31	122.8 (3)
02-N3-02'	113.2 (6)	P5C30C35	119.0 (3)
P5C10C11	117.8 (3)	C31-C30-C35	118.2 (4)
P5-C10-C15	123.4 (4)	C30-C31-C32	119.8 (4)
C11-C10-C15	118.7 (4)	C31-C32-C33	120.9 (4)
C10-C11-C12	120.0 (4)	C32C33C34	119.9 (4)
C11-C12-C13	120.6 (5)	C33—C34—C35	119.6 (4)
C12C13C14	120.0 (5)	C30-C35-C34	121.6 (4)

All calculations were performed using the *TEXSAN/TEXRAY* crystallographic software package (Molecular Structure Corporation, 1985). Structure solution: *MITHRIL* (Gilmore, 1984), *DIRDIF* (Beurskens, 1984).

We thank Professor Doyle Britton for his work on the structure determination. Funding in support of this research was provided by the National Institutes of Health (GM47365), the Searle Scholars Program/Chicago Community Trust, and the National Science Foundation (National Young Investigator Award).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: BK1045). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Beurskens, P. T. (1984). DIRDIF. Direct Methods for Difference Structures – an Automatic Procedure for Phase Extension and Refinement of Difference Structure Factors. Technical Report 1984/1. Crystallography Laboratory, Toernooiveld, 6525 ED Nijmegen, The Netherlands.
- Gilmore, C. J. (1984). J. Appl. Cryst. 17, 42-46.
- Halfen, J. A., Mahapatra, S., Olmstead, M. M. & Tolman, W. B. (1994). J. Am. Chem. Soc. 116, 2173–2174.
- Halfen, J. A. & Tolman, W. B. (1994). J. Am. Chem. Soc. 116, 5475-5476.
- Hulse, C. L., Averill, B. A. & Tiedje, J. M. (1989). J. Am. Chem. Soc. 111, 2322-2323.
- Jackson, M. A., Tiedje, J. M. & Averill, B. A. (1991). FEBS Lett. 291, 41-44.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Messmer, G. C. & Palenik, G. J. (1969). Inorg. Chem. 8, 2750–2754. Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure
- Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Ruggiero, C. E., Carrier, S. M., Antholine, W. E., Whittaker, J. W., Cramer, C. J. & Tolman, W. B. (1993). J. Am. Chem. Soc. 115, 11285–11298.
- Tolman, W. B., Carrier, S. M., Ruggiero, C. E., Antholine, W. E. & Whittaker, J. W. (1993). *Bioinorganic Chemistry of Copper*, edited by K. D. Karlin & Z. Tyeklár, pp. 406–418. New York: Chapman and Hall.

Acta Cryst. (1995). C51, 217-219

Bis(diphenylphosphino)methanetetradecacarbonylhexairidium Dichloromethane Solvate

MARINELLA MAZZANTI AND RAYMOND ROULET

Institut de Chimie Minérale et Analytique, Université de Lausanne, Place du Château 3, CH-1005 Lausanne, Switzerland

KURT J. SCHENK

Institut de Cristallographie, Université de Lausanne, BSP Dorigny, CH-1015 Lausanne, Switzerland

(Received 11 November 1993; accepted 30 August 1994)

Abstract

The molecules of the title complex, μ -bis(diphenylphosphino)methane-*P*:*P'*-tetra- μ_3 -carbonyl-decacarbonyl-octahedro-hexairidium, [Ir₆(CO)₁₄(C₂₅H₂₂P₂)] are discrete monomeric units. Their coordinator polyhedron is derived from that of the red [Ir₆(CO)₁₆] isomer with a chelating dppm [bis(diphenylphosphino)methane] ligand replacing two equatorial terminal carbonyl groups in *cis* positions. The clusters display mirror symmetry with respect to the two P